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1 Unbiased Sampling of Multi-view Diffuser

We rectify the unconditional noise in Formula 4 of the main paper:

ϵCFG
ϕ (zt, cI , cP ) = ω[ϵϕ(zt, cI , cP )− ϵϕ(zt,∅,∅)] + ϵϕ(zt,∅,∅)

ϵCFG
ϕ,ψ (zt, cI , cP ) = ω[ϵϕ(zt, cI , cP )− ϵψ (zt,∅)] + ϵψ (zt,∅)
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Fig. 1: Novel view synthesis on in-the-wild images. Comparison between Zero-1-to-3 [5]
and our rectification. Starting from the input view, the task is to generate an image of
the object under a specific camera pose transformation.

We found that rectifying the bias in Zero-1-to-3 [5] achieves significantly
better novel views from in-the-wild inputs. Fig. 1 shows examples from One-
2-3-45++ [4], Wonder3D [7] and SyncDreamer [6]. Our rectification is able to
generate novel views that are more consistent with the input view. Addition-
ally, rectification is able to generate novel views from input view while keeping
the original style as well as object geometric details. These examples show the
effectiveness of our rectification.

https://youjiazhang.github.io/USD/
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2 Two-stage Specified Diffusion Details

DreamBooth [11] provides a network fine-tuning strategy to adapt a given
text-to-image denoising network to generate images of a specific subject.
Low Rank Adaptation (LoRA) [2] provides a memory-efficient and faster
technique for DreamBooth. Priors work show that this low-rank residual fine-
tuning is an effective technique that preserves several favorable properties of the
original DreamBooth while also being memory-efficient as well as fast.
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Fig. 2: Fine-tuning. As a demonstration, we use the ‘owl’ image as a toy example.

We implement our DreamBooth on the Stable Diffusion [10] V2.1 diffusion
model and we predict the LoRA weights for all cross and self-attention layers of
the diffusion U-Net [12]. Fig. 2 illustrates the model fine-tuning with the class-
generated samples. Fig. 3 shows a collection of generation results to illustrate
how our method can generate novel images for a specific subject in different
contexts with descriptive prompts.
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Fig. 3: Results for re-contextualization of a ‘owl’ subject instances.

NeRF [8] uses a volume rendering method to learn a volumetric radiance
field for novel view synthesis. However, NeRF architectures are prone to cloudy
artifacts (floaters), which it is difficult to extract a high-quality surface, as shown
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Fig. 4: With the specialization diffusion model, we add a small noise, Stable Diffu-
sion [10] scheduler t = 200, to the NeRF [8] render images and conduct the denoising
process.

in Fig. 4. To address this issue, we denoise multi-view renderings from the trained
NeRF using the fine-tuned DreamBooth model.

3 3D Gaussian Splatting Representation

Recently, DreamGaussian [13] and GaussianDreamer [14] utilizes 3D Gaussians
as an efficient 3D representation that supports real-time high-resolution render-
ing via rasterization. We adapt 3D Gaussian Splatting [3] into the generative
setting with Unbiased Score Distillation (USD). Our method is implemented in
PyTorch [9], based on threestudio [1].
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Fig. 5: Optimization Progress. The shape to initializa the 3D Gaussians as sphere.
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